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Abstract

Two critical conditions for the dynamic buckling of columns are derived on the basis of the consideration of energy
transformation and conservation at the instant when the buckling occurs. The first critical condition is that the amount
of released compressive deformation energy must be equal to the sum of buckling deformation energy and buckling
kinetic energy in the instant course of the dynamic buckling. The second is that the rate of energy transformation meets
the conservation law in the instant course. The governing equations, the boundary conditions and the continuity
conditions derived by use of the first condition are the same as those obtained by use of Hamilton’s theorem. These
equations and conditions are insufficient for the determination of the critical load parameter and the exponent of
transverse inertia term involved in the problem. A supplementary restraint equation at compression wave front is
derived by use of the second condition.

Two characteristic equations for the two parameters are derived by use of the solution of the governing
equations and the above-mentioned restraint conditions. The two characteristic parameters and the corresponding
buckling modes are calculated accurately from the solution of the characteristic equations. The simple formulas for
the relation of the critical force with the buckling time are given. The theoretical results predicted by use of the
formula are in reasonable agreement with the existent experiment results. © 2002 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The buckling problem of columns under an axial load applied dynamically has been studied by many
investigators (Koning and Taub, 1933; Meier, 1945; Gerard and Becker, 1952; Davidson, 1953; Hoff, 1953;
Sevin, 1960; Hutchinson and Budiansky, 1966; Lindberg, 1966; Hayashi and Sano, 1972a,b; Ari-Gur et al.,
1982; Housner and Knight, 1983; Lindberg and Florence, 1983). A review for these studies was given by
Simitses (1987). In most of these studies, the column under consideration was assumed to have an ini-
tial imperfection. When some characteristic deflection increases rapidly with time, a dynamically critical
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condition is obtained. The buckling deformation mode and the corresponding critical load determined in
this way may be influenced by the initial imperfection. In addition to the above-mentioned studies, Lee
(1981) presented a quasi-bifurcation method for the dynamic buckling analysis of inelastic columns. Ko-
unadis and Raftoyiannis (1990) presented a nonlinear dynamic buckling analysis for discrete systems with a
limit point or an unstable branching point under static load. Tang and Zhu (1994) investigated the relation
between critical time and axial thrust corresponding to the first mode for the column clamped at the impact
end, and the experimental verification for the theoretical prediction was made.

Experimental results (Hayashi and Sano, 1972a,b; Lindberg and Florence, 1983; Tang and Zhu, 1994)
show that at an early stage of the impact the local buckling occurs near the impact end when the impact
velocity is high. From the experimental results, it may be concluded that it is necessary to consider the
propagation effects of the axial compression wave in the investigation.

An important problem in the investigation for the dynamic buckling of columns is how to determine
quantitatively the transverse inertia effect. This is essential to the accurate determination of the critical load
and the corresponding buckling mode. The investigation results of this paper will show that the transverse
inertia effect plays an important role in the dynamic buckling of columns.

In studies on the instability of structures under static loads, the buckling mode and the corre-
sponding critical load can be calculated first for the structure without imperfection, then the influ-
ence of imperfection on the buckling is investigated. Following the procedure of the static buckling
analysis for a perfect column, we may present the method of the dynamic buckling analysis of the
perfect column. In the linear analysis of the static buckling, an algebraic eigenvalue problem is deduced
in accordance with the condition under which the stability equation of the column has a nontriv-
ial solution satisfying the boundary conditions. By solving the eigenvalue problem, the buckling mode
and the critical load of the column are calculated accurately. In the static buckling problem, only one
characteristic parameter must be determined, which is the critical load parameter. In contrast to the
static buckling problem, there are two undetermined characteristic parameters in the dynamic buck-
ling problem, which are the critical load parameter and the exponent parameter related to the trans-
verse inertia term. The exponent parameter is named the dynamic characteristic parameter in this
paper.

For the dynamic buckling of columns, governing equations, boundary conditions and continuity con-
ditions at compression wave front can be derived by use of the adjacent-equilibrium criterion (Brush and
Almroth, 1975) and Hamilton’s principle. Only one characteristic equation can be derived from the con-
dition under which the governing equations have a nontrivial solution satisfying the boundary conditions
and the continuity conditions. It is obvious that one characteristic equation is insufficient for determining
the two characteristic parameters as above mentioned.

In this paper, in order to obtain the sufficient conditions of determining the two parameters, two critical
conditions for the dynamic buckling of columns are derived on the basis of the law of energy transfor-
mation and conservation at the instant when the dynamic occurs. The first critical condition is that the
amount of the released compressive deformation energy must be equal to the sum of the buckling defor-
mation energy and the buckling kinetic energy. The second critical condition is that the rate of energy
transformation meets the energy conservation law in the instant course of the buckling. The governing
equations, the boundary conditions and the continuity conditions derived by use of the first critical con-
dition are the same as those obtained by use of Hamilton’s theorem. A supplementary restraint equation at
the front of the compression wave is derived by use of the second critical condition. A couple of charac-
teristic equations for the two characteristic parameters are derived in accordance with the condition under
which the governing equations have a nontrivial solution satisfying the boundary conditions, the continuity
conditions and the supplementary restraint equation. The dynamic buckling modes, the critical load pa-
rameter and the dynamic characteristic parameter are calculated accurately from the solutions of the
characteristic equations.
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2. Compression wave and axial force in column

As shown in Fig. la, we consider a straight uniform column of length L and cross-section area A. The
section inertia moment of the column is /. The Young’s modulus of the column material is £ and the
material density is p. The loaded end of the column is movable in the axial direction and the other end is
fixed. At the instant 7, = 0, an axial step load with the magnitude N is applied suddenly at the loaded end A,
at the same time an elastic compression wave starts propagating toward the fixed end B from the loaded
end, at the velocity ¢ = \/E/p. In this paper, we deal with the dynamic buckling that occurs at the first two
stages of the compression wave propagation. In order to avoid the discussion of unloading problem, we
assume that the loading duration is larger than 2L/c.

(a) The first stage is defined as 0 < ¢ < L/c. At this stage, the compression wave front is propagating from
the loaded end toward the fixed end, and the compression wave has not reflected from the fixed end. The
characteristic representing the position of the wave front and the axial force in the column are illustrated in
Fig. 1a. At any instant ¢ of this stage, the propagation distance of the wave front from the loaded end is

Li=ct (21)

(b) The second stage is defined as L/c <t<2L/c. For this stage, the right end B of the column is des-
ignated as the loaded end and the origin of the x-axis is located at the left end A, as shown in Fig. 1b. At this
stage, the compression wave has already arrived at the fixed end and reflected from the fixed end for the first
time, and the reflected wave front is traveling toward the loaded end. For the convenience of analysis, the
instant when the wave front arrives at the fixed end is written as 7, = 0. At any instant ¢ of this stage, the
reflected wave front is at a distance L; = ¢t from the reflection end, as shown in Fig. 1b. In the region
0 < x < Ly, the axial stress caused by the initial compression wave together with the reflected wave is
obtained by superposition (Timoshenko and Goodier, 1970). In this paper, we only consider the case where
the reflection end is fixed in the axial direction and the axial stress in the region 0 < x < L; does not exceed
the material yield stress. Under the above-mentioned conditions, the axial force in the region 0 < x < L, is
twice as much as that in the region L, < x < L, as shown in Fig. 1b.

As shown by the experiments (Hayashi and Sano, 1972a,b; Tang and Zhu, 1994), the dynamic buckling
will occur at the first stage if the amplitude N of the applied load is large enough. The dynamic buckling
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Fig. 1. (a) Axial force in column before compression wave is reflected from the fixed end. (b) Axial force in column after compression
wave is reflected for the first time.
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may also take place at the second stage or after the second stage if the load amplitude is lower and the
loading duration is long enough. As mentioned above, the investigation of this paper will be confined to the
dynamic buckling occurring at the first and the second stages of the compression wave propagation.

3. Governing equations for dynamic buckling at the first stage
3.1. Governing equations and boundary conditions derived by Hamilton’s theorem

Before the dynamic buckling occurs, the column maintains the straight configuration, as shown in Fig.
la. For the portion 0 <x < ct, the axial displacement of the unbuckled column is denoted by u,. The axial
strain &y, the axial velocity i, and the axial force N,y are given respectively by the following expressions:
_duy  Nc
- dt EA’

Let u; and w denote respectively the infinitesimal axial-displacement increment and the infinitesimal
deflection of the portion 0 < x < ¢t of the column at the initial instant when the dynamic buckling occurs.
The total axial displacement and the total axial strain at the point on the centroidal line of the column are
given respectively by following equations:

& = Uy, Uy Ny =—N (0 <x < Cl) (31)

1
Uu=uy+u, &==¢&+eé, 81:M1,x+§W72x (0<x<ct) (32)

The displacements (u, wy = 0) and (u, w) represent the two adjacent configurations corresponding to the
same applied load. The portion ¢t < x < L of the column remains undisturbed, where the compression wave
front has not reached at the instant when the dynamic buckling occurs.

Considering that the effects of rotational inertia and shear deformation are small (Hayashi and Sano,
1972b), we may omit these effects and write the expressions of deformation energy U and kinetic energy K
for the buckled column, as follows:

ct ct
U=U + U, :1/ Nxsxdx—klEI/ (W) dx (3.3)
2 Jo 2 0 '
1 ct 1 ct
K:K1+K2:§pA/ wzdx+§pA/ i dx (3.4)
0 0

The work done by the external force is
W = Nu(0,1) (3.5)
Introducing Eqgs. (3.3)—(3.5) into the formula of Hamilton’s theorem (Fung, 1965)

5]
5/ (U—K—W)dx=0 (3.6)
|
From Eq. (3.6), we obtain the following governing equations and the boundary conditions
EIW e + (Nw ) + pAiw =0 (3.8)

(ul,x + %Wi) = Oa ul(l‘h t) =0 (39)
x=0
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w(0,£) =0, or (Nw,+EWw,), _,=0 (3.10)
Wit o=0, or {wu} _,=0

W(Llat) =0, {W~"}x:L| =0 (3.1 1)

In Egs. (3.9)—(3.11), the coordinates x =0 and x = L; = ¢t correspond to the loaded end and the com-
pression wave front, respectively.
By separation of variables, the deflection function w(x, ¢) is written as

wx, t) = Y(x)T(t), u(x,t) =Z(x)Ti(¢) (3.12)
Introducing the first term of Eq. (3.12) into Eq. (3.8) gives
T—2T=0, Y'"(x) +?Y"(x)+1Y(x)=0 (3.13)

where dotes and primes denote respectively differentiation with respect to the time variable ¢ and the axial
coordinate x, and 4 is the undetermined parameter that is named the dynamic characteristic parameter. The
parameters o and y are respectively defined as

, N, EI

_ N _= 3.14
o Uy (3.14)

For the dynamic buckling, the deflection w increases with the time variable ¢. Therefore, the solution of the
first term of Eq. (3.13) is taken as

A=w?>0, T=Coe ™ (3.15)

where t denotes the critical time when the dynamic instability occurs, and Cj is an infinitesimal integration
constant. From Egs. (3.7), (3.12) and (3.15), we obtain

40l
T4

Ty =17 = C9 7'(x) 4+ Y'(x) Y (x) Z(x) (3.16)

By use of Egs. (3.12), the boundary conditions Egs. (3.9)—(3.11) are transformed into

zﬂn+%pﬂm2:Q Z(ct) =0 (3.17)
Y(0)=0 or oY'(0)+Y"(0)=0

Y'(0)=0 or Y"(0)=0 (3.18)
Y(ct)=0, and Y'(ct) =0 (3.19)

The present dynamic instability analysis is to solve the second term of Eq. (3.13) under the boundary
conditions (3.18) and (3.19). In this problem, there are the two undetermined characteristic parameters,
which are the critical load parameter o> and the dynamic characteristic parameter /. = w?. Only one
characteristic equation is derived from the condition under which the second term of Eq. (3.13) has a
nontrivial solution meeting the boundary conditions (3.18) and (3.19). It is insufficient for the determi-
nation of the two characteristic parameters. In order to obtain the sufficient conditions of determining the
two parameters, it is necessary to present the new criterion for the dynamic instability of the column.
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3.2. The criterion of energy transformation and conservation and the supplementary restraint equation at the
compression wave front

Let us check the variation of the deformation energy and the kinetic energy of the column in the instant
course of the dynamic buckling. Neglecting the shear deformation and considering that u;, ¢ and N, are
arbitrarily small increments in contrast with the quantities ug, & and N,, we write the increment of the
deformation energy of the column as

ct 1 1 ct
AU:—/ N(ul_x+§wi)dx+§EI/ w_dx (3.20)
0 ' 0 '

With the rotational inertia effect omitted, the increment of the kinetic energy is written as
1
2
From Egs. (3.1), the second term of Egs. (3.12), (3.16) and (3.17), it is proved that

1 ct ct
AK:K1+AK2:§;)A/ wdx + pA/ (2arginy + i) dx (3.21)
0 0

ct 1 ct
/0 (i) dx = 0, AK, :§pA/O it dx (3.22)

By use of Egs. (3.7) and (3.16), we can prove that # is an infinitesimal with the same order of magnitude as
w?. Therefore, AK, may be omitted from Eq. (3.21), and we obtain

1 ct
AK =K, zsz/ w?dx (3.23)
0
In the instant process of the dynamic buckling, the increment of the work done by the external load is
AW = Nu,(0,¢) (3.24)
According to the law of energy conversation, there must be
AW = AU + AK (3.25)
We write
1 ct
Upre = = / Nw? dx (3.26)
2 0 ”
l ct
Upwe = = EI / w2 dx (3.27)
2 0
From Egs. (3.20) and (3.23)—(3.27), the following equation is obtained.
Upre = Upue + AK (3.28)

In Egs. (3.26), (3.27) and (3.23), U, denotes the compressive deformation energy released owing to the
buckling, Uy, represents the buckling deformation energy and AK is the buckling kinetic energy. In fact,
the buckling of a structure at the bifurcation point is an instant process of releasing partially compressive
deformation energy (Evans and Hutchinson, 1984; Wang, 1999). When the buckling takes place, the
structure abruptly gets into an adjacent configuration from its initial configuration. This instant process is
accompanied with the release of the partial compressive deformation energy. The released compressive
deformation energy transforms into the buckling deformation energy and the buckling kinetic energy of the
structure. Eq. (3.28) is the critical condition of the dynamic buckling of the column. It shows that amount
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of the released compression energy must be equal to the sum of the buckling deformation energy and the
buckling kinetic energy in the instant course of the dynamic buckling.

Differentiating both sides of Eq. (3.28) with respect to the time variable 7, we obtain the second critical
condition for the dynamic buckling of the column

Upre = Upue + AK (3.29)

Eq. (3.29) shows that the energy transformation rate meets the conservation law in the buckling process.
The critical conditions (3.28) and (3.29) compose the criterion of the dynamic instability of the column,
which may be named the criterion of energy transformation and conservation. For the static bifurcation
instability, K = 0, only critical condition (3.28) is needed.

Substituting Egs. (3.23), (3.26) and (3.27) into the critical condition (3.28), by use of first term of
Eq. (3.12), we re-obtain the first term of Eq. (3.13) and derive the following equation.

ct

ct ct
oﬂ/ [Y’(x)]zdx—/ [V (x)] dx—4 [ [¥(x)]Pdx=0 (3.30)
0 0 0
Integrating Eq. (3.30) by parts, we re-obtain the second term of Eq. (3.13) and the boundary conditions
(3.18) and (3.19).

Introducing Egs. (3.23), (3.26) and (3.27) into the critical condition (3.29), we derive the following
equation.

E[T'T{oﬁ/od [Y’(x)]zdx—/ow [7"(x)]" dx — 2 “ [Y(x)]zdx}

0

+ %EITzc{ocz [¥'(ct)]” = [¥7(ct)]” = A[Y(ct)]z} =0 (3.31)

By use of Egs. (3.19) and (3.30), from Eq. (3.31) we obtain the supplementary restraint condition at the
compression wave front:

Y'(et) = 0 (3.32)

The governing equation (3.13, second term), the boundary conditions (3.18) and (3.19) and the sup-
plementary restraint equation (3.32) compose the necessary and sufficient conditions for determining the

buckling modes, the critical load parameter o> and the dynamic characteristic parameter 4 = w?.

4. Governing equations for dynamic buckling at the second stage

At the instant 7 of the second stage of the compression wave propagation, the traveling distance of the
reflected wave front from the reflection end is L; = ct, as shown in Fig. 1b. The amplitude of axial force in
the column is equal to 2N for the region 0 < x < L; and N for the region L; < x < L.

For the dynamic buckling of the column at this stage, the buckling deflection w(x,?) is written as

w(x, 1) =w(x,t) for 0<x<ct 4.1

w(x,t) = wy(x,t) for ct<x<L (4.2)

For brevity, we use the critical condition (3.28) instead of the Hamilton’s theorem for the derivation of
governing equations, boundary conditions and continuity conditions. The compressive deformation energy
released in the instant course of the dynamic buckling is written as
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1

ct 1 L
Uprezizvl/0 (wle)zderiNz/ (W) dx (4.3)
ct

where
Ny =2N, N,=N

The buckling deformation energy is

1 ct 1 L
Upe = 5 EI /0 wiuderEEI / w;_dx (4.4)
ct

As mentioned in Section 3.2, the quantity #? is negligible as compared with w?. The buckling kinetic energy
is written as

ct L
AKzlpA/ w%dx+1pA/ W) dx (4.5)
2 0 2 ct
We write the deflection function into the variable-separated form:
wy(x, ) = T() Y1 (x) (4.6)

wa(x, 1) = T(t) \a(x) (4.7)

Introducing Egs. (4.3)—(4.5) into the critical condition (3.28), by use of Egs. (4.6) and (4.7), we derive the
first term of Eq. (3.13) and the following equation:

[ e e [ paco e [ e [ preopae [ ieras

L
- /1/ [Y2(x)]*dx = 0 (4.8)
ct
where
N, N-
2 V1 2 _ 12
0= = (4.9)

Integrating the left side of Eq. (4.8) by parts, we obtain the following governing equations (4.10) and (4.11),
and the continuity conditions (4.12) and (4.13) at the reflected wave front:

d'y, d*y,
K“l+ 1dx21+,1Yl =0, for 0<x<ct (4.10)
d*y. d*y:
dx42+ 2dx22+m’2 0, for ct<x<L (4.11)
Yi(ct) = Yy(ct) (4.12)

Yi(ct) = Yr(ct), Y(ct) =Y, (ct), @13
Y| (ct) + Y/ (ct) = 3Y;(ct) + ¥)"(ct) ’

The following boundary conditions at both ends of the column are also derived from the partial inte-
gration of Eq. (4.8).
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The boundary conditions at the reflection end x = 0 are written as
71(0)=0 or oY/ (0)+Y/"(0)=0

, Y (4.14)
¥(0)=0 or ¥/(0)=0
For the loaded end x = L, we have the boundary conditions
N(L)=0 or ofY/(L)+Y/"(L)=0 (4.15)

Y(L)=0 or ¥(L)=0

Eqgs. (4.10)—(4.15) are insufficient for the determination of the problem solution. We can derive the
supplementary equation by use of the critical condition (3.29). Introducing Eqgs. (4.3)—(4.5) into Eq. (3.29),
by use of Eq. (4.8) we derive the following equation.

. . . 1 7 2 ! 2 ! 2

Upee = Uhue = AK = 3 EITe{ o[ (er)]” = B [1i(en)]” = [¥}/(e0)]

+ [W(et)]” = Ani(er) + A[Yz(ct)]z} =0 (4.16)

From Eq. (4.16), by use of Egs. (4.12) and first and second terms of Egs. (4.13) we obtain the following
restraint equations at the reflected wave front:

Y/(ct) =0 Yy(ct) =0 (4.17)

The governing equations (4.10) and (4.11), the continuity condition (4.13), the boundary conditions

(4.14) and (4.15), and the supplementary restraint equation (4.17) compose the necessary and sufficient
conditions for determining the solution of the dynamic buckling problem in this section.

5. Solutions of equations
5.1. Solution of the equations for dynamic buckling at the first stage

For the convenience of analysis, we rewrite the governing equation (3.13, second term), the boundary
condition (3.19) and the supplementary restraint equation (3.32) as follows:

Y (x) 4+ oY (x) + 0’ Y(x) =0 (0<x< L =c) (5.1)
Yi(et) =0, Y/(ct)=0 (5.2)
Y'(ct) =0 (5.3)

For the boundary conditions of the loaded end list in Egs. (3.18), we consider the two cases as follows:
(1) The column is simply supported at the loaded end.

Y(0)=0, Y"(0)=0 (5.4)
(2) The loaded end is clamped, but is movable in the x-axis direction.
Y(0)=0, Y'(0)=0 (5.9)

For the values of the parameters o> and , there are three kinds of cases: (a) &2 > 2w, (b) &} = 2w, and
(c) o} < 2w. By the derivation, it is found that only if «? > 2w, the governing equation (5.1) has the solution
satisfying the restraint conditions (5.2), (5.3) and (5.4) or (5.5). The expression of the solution is written as
follows.

Y(x) = D; cos(f,x) + D, sin(f,x) + D3 cos(f,x) + Dy sin(f,x) (5.6)
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where
ﬂl—\/%{a2+M}, ﬁz—\/%{az—\/oc“—%)z} (5.7)
o = ﬁ% + ﬁgv w=pp (5.8)

For the column that is simply supported at the loaded end, introducing the expression (5.6) into Egs.
(5.2)—(5.4), we obtain a series of the values of the dimensionless parameters 5L, and f5,L;:

fiLi=m+ ), p,L; =nm, n=1,273,... (5.9)

For the column of which the loaded end is clamped but movable in the axial direction, introducing the
expression (5.6) into Egs. (5.2), (5.3) and (5.5), we obtain

Bl =nm+2)n, p,L =nm, n=17273,... (5.10)
In the above-mentioned derivation, the integration constants D; (i = 1,2, 3,4) are also calculated except

for an undetermined multiplying factor.

5.2. Solution of the equations for dynamic buckling at the second stage

5.2.1. Solution of Egs. (4.10) and (4.11)

For the dynamic buckling of the column at the second stage of compression wave propagation, the
conditions of determining solution consist of the governing equations (4.10) and (4.11), the continuity
condition (4.13), the supplementary restraint equation (4.17), and the boundary conditions (4.14) and
(4.15). Eqgs. (4.13) and (4.17) are re-written as follows.

Yi(ct) = Yr(ct), Y(ct) =Y)(ct), Y/(ct)=7Y,"(ct) (5.11)

Y(ct) =0, Yi(ct) =0 (5.12)

In order to compare the dynamic buckling of the column at this stage with that at the first stage, we
consider the case where the loaded end is clamped but movable in the axial direction.

W(L)=0, ¥(L)=0 (5.13)

For the boundary condition (4.14) at the reflection end, we consider the following two cases.
(1) The column is hinged at the reflection end.

Y(0)=0, Y"(0)=0 (5.14)
(2) The column is clamped at the reflection end.
Y(0)=0, Y(0)=0 (5.15)

By derivation, it is found that only if o > 2w > 03, Egs. (4.10) and (4.11) have the solution satisfying
the restraint conditions (5.11), (5.12), (5.13) and (5.14) or (5.15). The expressions of the solution are
written as

Y1(x) = Dy cos(fi,x) + Dy sin(f,x) + D3 cos(f,x) + Dysin(frx)  (0<x < ct) (5.16)

Ya(x) = ch(&x)[dy cos(Erx) + da sin(&yx)] + sh(&yx)[ds cos(Exx) + dysin(éxx)] (et <x <L) (5.17)

where
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ﬁlz\/%[ocf+\/oc‘l‘—4w2], ﬁzz\/%[(x%—q/o{?—4a)2:| (5.18)
o=+ =50, o=pp (5.19)

| 1y
él :E 20 — a%, 52 :E 260"’“% (520)

The solution (5.16) represents the dominant buckling deformation in the region 0 < x < ¢t where the re-
flected wave is superposed on the initial compression wave, and the solution (5.17) represents the distur-
bance deformation in the other portion of the column.

5.2.2. The solution of the characteristic parameters

Introducing the expression (5.16) and (5.17) into Egs. (5.11), (5.12), (5.13) and (5.14) or (5.15), we obtain
nine linear algebraic equations for the eight constants D; and d; (i = 1,2,3,4). In accordance with the
conditions under which the nontrivial solution exists for these equations, we derive the two algebraic
characteristic-equation (5.21) for the characteristic parameters x;, = ff,L; and x, = f5,L;.

E(K17K27’7) :Oa B(K1;K2an) =0 (521)

In Eq. (5.12), n = (L — ct)/L. After the roots of Eq. (5.21) is solved, the values of the parameters o2 and
o = /7 are calculated by use of first and third terms of Eq. (5.19), and the corresponding buckling modes
are computed by use of Egs. (5.16) and (5.17).

6. Numerical results
6.1. Results for the dynamic buckling at the first stage of compression wave propagation

Let t denote the critical buckling time and L; denote the traveling distance of the compression wave
when the dynamic buckling occurs.

Ll = CT, L2 :L—L1 (61)

When dynamic buckling deformation occurs in the portion 0 < x < ¢t of the column at this stage,
the portion of the column before the wave front remains undisturbed. For the two types of boundary

first mode

third mode
[N
# 1.00

second mode

.00

Fig. 2. The first three modes of dynamic buckling at the first stage for columns simply supported at loaded end.
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1.00
0.80 T ﬁrst mode
0.60 +
0.40 third mode
§ 0.20 +
é 0.00 = i

.00

-0.40 ~
-0.60 1+
-0.80 + second mode
-1.00 o E—

Fig. 3. The first three modes of dynamic buckling at the first stage for columns of which loaded end is clamped but movable in the axial
direction.

F{izlzallues of Ag") and A;”) for dynamic buckling before compression wave reflection
Loaded end is simply supported Loaded end is clamped but axially movable
n=1 n=2 n=73 n=1 n=2 n=73
AP 572 1372 2572 1072 2072 3472
AP 2 6n* 1272 3n? 8n? 157

conditions considered in Section 5.1, the first three buckling modes are shown in Figs. 2 and 3. Fig. 2
corresponds to the column of which the loaded end is simply supported, and Fig. 3 corresponds to the
column of which the loaded end is clamped, but movable in the axial direction.

We introduce the dimensionless critical-load parameter /1 and the dimensionless dynamic-character-
istic parameter /1

A = (i Ly)?, Ag'” = wl? (6.2)
where the superscript n denotes that the value of the parameter is corresponds to the nth buckling mode.
The relation of the critical force with the buckling time 7 is expressed as

(n) (n)

v _ AVEL _ AVEL

cr L2 C2,L-2

(6.3)

Corresponding to the first three modes, the values of the parameters A and A are list in Table 1.

From Table 1, it can be seen that the values of the critical-load parameter A are 57° and 107 re-
spectively for the two types of loaded-end boundary conditions. The value of the corresponding critical-
load parameter is 2.0467° for the static buckling of the column that is simply supported at one end and
clamped at another end. The value of the critical-load parameter is 47> for the static buckling of the column
of which both ends are clamped but one end is movable in the axial direction. It is obvious that the critical
load for the dynamic buckling is much higher than that for the static buckling.

From Egs. (3.21) and (3.22), it can be seen that the buckling kinetic-energy AK in the right side of
Eq. (3.28) is positively definite. It is that the buckling kinetic-energy term AK makes the critical force for the
dynamic buckling much higher than that for the static buckling of the column. For the same reason, it can
be concluded that omitting the term AK, in the expression of the buckling kinetic-energy AK, that is
omission of the axial inertia effect, will make the obtained critical force be a little lower than its true value.
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Assuming that the dynamic buckling takes place when the compression wave front arrives at the fixed
end, the comparison of the first two dynamic modes with the static buckling modes is shown in Figs. 4 and
5. From Figs. 4 and 5 it is obvious that the dynamic modes are different from the static modes.

6.2. Comparison of theoretical results with experimental results

In order to compare the theoretical results in Section 6.1 with experimental results given by Tang and
Zhu (1994), we introduce the following parameter.

N et 5, 1
or _c 2 6.4
T M= (6.4)

In Eq. (6.4), A denotes the cross-section area of the column. For the case n = 1, the formula (6.3) is re-

written as

en* = Agl) (6.5)

&=

Introducing the value of the parameter Aﬁl) from Table 1, the formula (6.5) for the column clamped at
loaded end is written as

first static

WW o
S
(=3
S

.00

second static

-1.00 *

first static

WW s

Fig. 5. Comparison of dynamic modes with static modes for columns of which loaded end is clamped but movable in the axial direction
and the other end is clamped.
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en® = 107? (6.6)

The experimental investigation of Tang and Zhu (1994) was confined to the dynamic buckling that
occurs before compression wave is reflected from the fixed end. Only clamped boundary condition at the
impact end was considered and only situation where the bar buckles in the first mode was dealt with.
The experiment was carried out using a Hopkinson bar to detect critical buckling times of a specimen. The
specimen is a long steel bar with rectangular cross-section 7.3 x 10 mm?. The specimen was impacted with a
shorter steel-bar projectile at velocities from 6 to 22 m/s. Three pairs of strain gauges were placed on
opposite sides of the specimen at three different positions. Before bending signals reached a measuring
station, strains recorded by the pair of gauges would be identical. When recorded strain signals began to
split into two different traces, dynamic buckling occurred. The time of strain record split in the first pair of
opposite gauges was defined as the critical buckling time. For every impact velocity, an axial strain ¢ and a
corresponding critical time T was obtained. In this way, a series of experimental points in ¢ —  plane was
obtained. By a least square fitting, Tang and Zhu (1994) gave the following empirical formula.

aexpnﬁxp =947’ (6.7)

It can be seen that the theoretical result predicted by the formula (6.6) is in reasonable agreement with
the experiment result of Eq. (6.7). The experimental value at the right side of Eq. (6.7) is lower than the
theoretical value of the formula (6.6). This situation may be owing to that the impact end of specimens was
not completely clamped.

6.3. Results for the dynamic buckling at the second stage of compression wave propagation

At this stage, the first term of Eq. (6.1) denotes the propagation distance of the reflected wave front from
the reflection end A when the dynamic buckling occurs, as shown in Fig. 1b. The dynamic buckling is
caused mainly by the axial superposition force in the region 0 <x < L;. The numerical results are obtained
by use of the solution in Section 5.2. In order to compare the results for the dynamic buckling at this stage
with the results of Section 6.1, we consider the following two types of boundary conditions: (1) The re-
flection end is hinged; (2) The reflection end is clamped. For both cases, the loaded end is clamped but
movable in the axial direction.

For the above-mentioned two types of the boundary conditions, the first three dynamic buckling modes
are illustrated in Figs. 6-9, where the point x/ct = 1 at x-axis corresponds to the reflected wave front. From
Figs. 6-9, it can be seen that the disturbance deformation in the region ¢t < x < L decreases rapidly with

~0.200-00 ‘ . 200 250
x/(cT)

3.00

Fig. 6. The first three modes of dynamic buckling at the second stage for columns hinged at reflection end, L/L; = 3.
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875

Fig. 7. The first three modes of dynamic buckling at the second stage for columns hinged at the reflection end, L/L; = 2.

the increment of the distance from the reflected wave front. The values of the parameters Ai") and A(;)
corresponding to the different values of k = L, /L, are list in Tables 2 and 3. At this stage, the value of the
parameters Ail) is lower than the values 57 for the column of which the reflection end is hinged, and is

WW

second mode

third mode
i

2.00 2.50
x/(eT)

irst mode
—

Fig. 8. The first three modes of dynamic buckling at the second stage for columns clamped at reflection end, L/L; = 3.

1.00
0.80 +
0.60 +
0.40 +

.00

Fig. 9. The first three modes of dynamic buckling at the second stage for columns clamped at reflection end, L/L; = 2.
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Table 2
The values of /1(]") and A;") for dynamic buckling at the second stage, for the column of which the reflection end is hinged
Ly/L, 2.0 1.0 0.5 0.3 0.2 0.05
A%")(nz) n=1 4.7442 4.7186 4.2697 4.0229 4.2163 4.7609
=2 12.817 12.816 12.814 12.061 11.443 12.388
3 24.858 24.858 24.807 24.825 23.535 23.850
A;”)(nz) n=1 2.1272 2.1097 1.8652 1.6408 1.6957 1.9045
n=2 6.0915 6.0910 6.0831 5.6943 5.3201 5.7180
=3 12.071 12.071 12.045 12.049 11.386 11.449
Table 3
The values of Aﬁ") and Ag”) for dynamic buckling at the second stage, for the column of which the reflection end is clamped
L,/L, 2.0 1.0 0.5 0.3 0.2 0.05
Ai”)(nz) n=1 9.0911 8.6878 8.0038 6.4894 7.1854 9.0780
n=2 19.354 19.223 18.563 16.904 15.036 18.172
n=3 33.475 33.452 32.967 33.335 28.896 30.930
A(z")(nz) 1 3.4205 3.2629 2.9588 2.0032 2.1663 2.7234
=2 8.3234 8.2672 7.9611 7.1935 6.0884 7.2690
3 15.253 15.243 15.020 15.167 13.032 13.646

lower than the value 107> for the column of which the reflection end is clamped. For the dynamic buckling
at this stage, N in Eq. (6.3) represents the critical value of the axial force N; in the region 0 < x < ct.

7. Conclusion

(1) Two critical conditions for the dynamic buckling of columns have been derived on the basis of the
consideration of energy transformation and conservation. The necessary and sufficient conditions for the
solution of the dynamic buckling of the column are derived by use of the two critical conditions or by use of
the adjacent-equilibrium criterion and the second critical condition.

A couple of characteristic equations for the two characteristic parameters are derived. The dynamic
buckling modes, the critical load parameter and the dynamic characteristic parameter are calculated ac-
curately from the solutions of the characteristic equations. Thus, the method of the characteristic-value
analysis is presented for the elastic dynamic buckling of the column under an axial compression wave
Simple formulas for the relation of the critical force with the critical buckling time are given.

(2) Transverse inertia effect has been determined quantitatively in terms of the value of the dynamic
characteristic parameter. It is the transverse inertial effect that makes the critical force of the dynamic
buckling be much higher than that of the static buckling for the column. Neglecting the axial inertia effect
and the rotational inertia effect in the analysis will make the calculated value of critical force be a little lower
than its true value.
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